#### ISLAMIC UNIVERSITY

College of Medical Technology

Department of Medical Laboratory Technology



# GlycoLysis

Lecturer: Dr. Abbas Almulla Ph.D. clinical biochemistry



**GLYCOLYSIS:** Pathway include 10 steps for convert glucose in two molecules of pyruvate and produce energy.

#### **OCCUR** in the cytoplasm of cells

#### \*\*Steps of Glycolysis

**STEP 1: Phosphorylation of glucose** 



Adenosine triphosphate (ATP)

Phosphate group

## STEP 2: ISOMERIZATION



## STEP 3: PHOSPHORYLATION



#### **STEP 4: BREAKDOWN** CH<sub>2</sub>O· CH<sub>2</sub>O ĊH<sub>2</sub>OH Dihydroxyacetone phosphste (DHAP) Aldolase HO-٠Н Triose Isomerase OH H-H-OH ĊH<sub>2</sub>O—**P** Furctose-1,6 bis-P H-CH<sub>2</sub>O-

Glyceraldehyde 3-P

## STEP 6: Oxidative-Phosphorylation



# STEP 7: Substrate level-phosphorylation



# STEP 8: Transfer phosphate group From 3 to 2



## STEP 9: DEHYDRATION



## STEP 10: Substrate level-phosphorylation



## Regulation of Glycolysis

Regulation of Glycolysis is done by *slowing down* or *speeding up* steps in the glycolytic pathway. The regulation is accomplished by the enzymes that are involved, that are inhibiting or activating enzymes.



**Hexokinase** enzyme is inhibited by glucose-6-phosphate. The product of the first reaction inhibits the first reaction og glycolysis. Glucose and ATP are not committed to glycolysis unless the need of glycolysis.

**Phosphofructokinase:** This is the major control point for glycolysis process. The PFK is inhibited by ATP and citrate and is activated by AMP, ADP and fructose 2,6-bisphosphate

**Pyruvate Kinase** is inhibited by acteyl-CoA, ATP and alanine. This enzyme is activated by fructose 1,6-bisphosphate. The enzyme is inhibited by cAMP dependent phosphorylation.

| Aerobic respiration                                                          | Anaerobic respiration                                                                            |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| It takes place in the presence of oxygen.                                    | 1) It takes place in the absence of oxygen.                                                      |
| 2) In aerobic respiration, complete oxidation of glucose takes place.        | 2) In anaerobic respiration, the glucose molecule is incompletely oxidised.                      |
| 3) End products are CO <sub>2</sub> and water.                               | <ol> <li>End products are either ethyl alcohol<br/>or lactic acid and CO<sub>2</sub>.</li> </ol> |
| 4) Lot of energy is liberated (38 ATP).                                      | 4) Relatively small energy is liberated (2 ATP).                                                 |
| 5) It occurs in plant's and animal's cells.                                  | 5) Occurs in many anaerobic bacteria and human muscle cells.                                     |
| 6) $C_6H_{12}O_6 + 6O_2 \rightarrow$<br>6 $CO_2 + 6H_2O + 686 \text{ K.cal}$ | 6) $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2 + 56 \text{ K.cal}$                               |

#### Three fates of pyruvate produced by glycolysis



